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This paper and Part 2 report various new insights into the classic Kelvin—Helmholtz
problem which models the instability of a plane vortex sheet and the complicated
motions arising therefrom. The full nonlinear version of the hydrodynamic problem
is treated, with allowance for gravity and surface tension, and the account deals
in precise fashion with several inherently peculiar properties of the mathematical
model. The main achievement of the paper, presented in §3, is to demonstrate that
the problem admits a canonical Hamiltonian formulation, which represents a novel
variational definition of a functional representing perturbations in kinetic energy.
The Hamiltonian structure thus revealed is then used to account systematically for
relations between symmetries and conservation laws, and none of those examined
appears to have been noticed before. In §4, a generalized, non-canonical Hamiltonian
structure is shown to apply when the vortex sheet becomes folded, so requiring a
parametric representation, as is well known to occur in the later stages of evolution
from Kelvin—Helmholtz instability. Further invariant properties are demonstrated in
this context. Finally, §5, the linearized version of the problem — reviewed briefly
in §2.1 — is reappraised in the light of Hamiltonian structure, and it is shown
how Kelvin—-Helmholtz instability can be interpreted as the coincidence of wave
modes characterized respectively by positive and negative values of the Hamiltonian
functional representing perturbations in total energy.

1. Introduction

Named after Kelvin and Helmholtz who developed it originally, the linearized
theory describing the instability of a plane vortex sheet is a classic of hydrodynamics.
Accounts of it are included in many standard texts (e.g. Lamb 1932, §232). Being
the subject of many further theoretical developments to be reappraised here (e.g.
Drazin 1970), the nonlinear evolution of perfect-fluid motions started from small
perturbations of a vortex sheet is also usually known by the term Kelvin—Helmholtz
instability; and the general form of behaviour exhibited in later stages of evolution,
in which the sheet rolls up into billows, is well known from numerical solutions of
the hydrodynamic problem. In the original model the unperturbed vortex sheet is
horizontal, separating an infinite perfect fluid below from another perfect fluid of
smaller density above, and so gravity has some stabilizing influence. The model is
nevertheless pathological in that, however small the discontinuity in tangential velocity

1+ TBB (1929-1995) requiescat in pace.



302 T. B. Benjamin and T. J. Bridges

across it, the interface is unstable and the growth rate of infinitesimal disturbances
increases without limit as their wavelength decreases. Allowance for surface tension
obviates these unsatisfactory features, and the Kelvin—-Helmholtz model with this
straightforward modification will be the subject of the extensive reassessment that
follows here and in Part 2 (Benjamin & Bridges 1997).

At first sight the evolutionary problem posed by this model appears peculiarly
complicated, lacking standard attributes of nonlinear dynamical systems. It appears
to be much more complicated than the problem of water waves, to which of course the
present problem reduces, losing its distinctive aspects if the upper fluid is removed.
The perturbed motions in the lower and upper fluids are both irrotational, but
each of their respective velocity potentials has an intricate, different relation to the
configuration and normal velocity of the interface; in general neither the potentials
themselves nor their normal derivatives are continuous across the interface. Moreover,
the dynamical condition relating pressures in the fluids on either side of the interface
to the normal-stress discontinuity caused by surface tension is formidably complex;
and thus the underlying simple structure that will be revealed in what follows is by
no means obvious.

It will be shown in §3, for the first time as far as we know, that the full nonlinear
problem admits a canonical Hamiltonian formulation. This achievement depends
on recognizing a suitable pair of dependent variables, which alone determine every
other property of the motion, and on defining a suitable Hamiltonian functional
which represents a bounded and conserved perturbation of energy. (The total kinetic
energy of the Kelvin—Helmholtz model is of course infinite in any frame of reference.)
A crucial step is the use of a variational principle to define the kinetic-energy
perturbation as a functional of the dependent variables, which device is believed to
be novel. The device is essential to our theory, being the cornerstone of the discovered
Hamiltonian structure, and it can be applied as a refinement of other Hamiltonian
formulations for continuous (i.e. infinite-dimensional) dynamical systems — notably
that for the water-wave problem.

Because the water-wave problem is included as a degenerate case of the Kelvin—
Helmholtz problem, the present formulation may be regarded as a generalization of
the simpler case and advantages comparable at least with those provided in this way
for water-wave theory may be sought. The Hamiltonian representation for irrotational
water waves was noticed first by Zakharov (1968), and it has been variously used
by Benjamin (1972, 1974), Miles (1977), Benjamin & Olver (1982) and others. The
addition of vorticity requires a Lie—Poisson formulation and, for inviscid water waves,
this structure has been constructed by Lewis et al. (1986).

An important consequence of Hamiltonian structure is a framework for enumerat-
ing conservation laws. For example, Benjamin & Olver used the Hamiltonian structure
of the irrotational water-wave problem to account systematically for relations between
its symmetries and all the conservation laws for water waves. On a similar basis, for
the Kelvin—Helmholtz problem, a number of interesting conservation laws related to
symmetries will be demonstrated in §3.3 and §4.3; but we do not claim the list of such
properties to be complete. Two functionals constituting the components of horizontal
impulse are of special interest, being confirmed as invariants of any free motion.
They are identified according to a generalized definition of impulse with reference to
Hamiltonian structure and the horizontal translation group (cf. Benjamin 1984, §1.3),
and they are perhaps surprising because a rudimentary definition of hydrodynamic
impulse (e.g. see Lamb 1932, §152) fails to have meaning when applied to the present
model.
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FIGURE 1. Illustration of the Kelvin—-Helmholtz model’s undisturbed state.

The canonical Hamiltonian formulation established in §3 ceases to hold when, as
is well known to happen eventually as an outcome of Kelvin—Helmholtz instability,
the interface becomes folded so that its height is no longer a single-value function of
horizontal position. An extension of the new theory to this state of evolution will be
presented in §4, where a non-canonical but equally useful Hamiltonian formulation
will be shown to hold for parametric representations of the evolving interface. This
formulation generalizes one that Benjamin & Olver (1982, Appendix 1) showed to
cover parametric representations of the free surface in the water-wave problem, and
it too provides a clear, indeed particularly conspicuous, view of the relations between
symmetries and conservation laws. The principal conservation laws demonstrated
may deserve attention as checks on numerical investigations into the later stages of
evolution from Kelvin—-Helmholtz instability.

We accordingly claim that this classic problem still offers much scope for new
insights. Other novel aspects, several of them surprising, will be presented in Part 2.

2. The hydrodynamic problem

The model demonstrating Kelvin—-Helmholtz instability is illustrated in figure 1. In
the model’s undisturbed state, the horizontal plane z = 0 coincides with the interface
between perfect liquids of density p below and density p’ < p above, which have
velocities U and U’ respectively in the x-direction. The disturbed interface S is
described by

z=1n(x,,1),

where 7 is supposed to be a single-valued, continuously differentiable function of the
horizontal coordinates (x,y). (In §4 it will be shown how the theoretical problem
is modified when S is folded and a parametric description of S becomes necessary.)
Perturbations of the flows below and above S are assumed to be irrotational, having
velocity potentials ¢(x, y, z,t) and ¢'(x, y, z, t) which are harmonic functions of (x, y, z)
in the respective regions z < # and z > 5. The liquids are taken to be unbounded
below and above S, so that we require [V¢| — 0 as z — —oo and |[V¢'| — 0 as z — oo.

Let @(,) and @'(,) denote the normal derivatives of ¢ and ¢’ at S, where the normal
on S points into the upper fluid. Then the kinematic conditions relating the motion
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of S to velocities in the two contiguous liquids can be written
ne + U;/]A = R@(n)a N + U,nx =R¢,(n)a (21)

with R = (1 4} +n})"/? (cf. Drazin 1970, equation (5)). The dynamical condition at
the interface is found upon using the Bernoulli integral, for the irrotational motions
on each side, to express the pressure difference p — p’ across S. Allowance is made
that the stagnation pressure (Bernoulli constant) is % pU? below the interface, %p’ U”?
above, and that p — p’ = —20H, where ¢ is the coefficient of surface tension and

2H = (n</R)x + (1,/R),

is twice the (upward) mean curvature of S. The outcome is
10 / 5/ 2 /
PP + Ui+ 3¢°) = p' (¥ + U'P o+ 347) = —glp— pin +20H,  (22)

in which @) = ¢,(x, y,5,1), Py = Px(x,,1,1), ¢ = |V¢| at z = 5, and correspondingly
for derivatives of ¢’ (cf. Drazin 1970, equation (6)).

The nonlinear conditions (2.1) and (2.2) completely determine the evolution of the
surface S until R — oo somewhere on it and thereafter the surface becomes folded.
The evolutionary problem will be shown in §3 to have a canonical Hamiltonian
representation in terms of the dependent variables n and { = p® — p'®, where

® = P(x,y,n,t) and ¢ = ¢'(x,y,n,1).
2.1. Linearized theory

The results given upon linearisation of (2.1) and (2.2) are classic (cf. Lamb 1932;
Chandrasekhar 1961, §101), but they need to be recalled for reference later. The
linearized versions of (2.1) and (2.2) are

N + U”‘c = ¢z|z=0’ Ny + U/nx = ¢,z|z=0> (23)

p[¢t + U(bx]‘z:O - ,0, [¢,t + U/¢/x]|z:0 = _g(p - P/)’? + 6(77xx + nyy) . (24)
The representative solution of the linearized problem has the form

n(x, y,1t) , A1)
( d(x,,2,1) ) = Re | /) ( B(t)e" )
¢'(x,y,2,1) B'(t)e™*

where the wavenumbers o and f are real and k = +(o* + f?)"/%. The kinematic
conditions (2.3) require that B = (4 + iaU A)/k, B® = —(A + iaU'A)/k; and, if
A(t) = A(0)e", (2.4) then gives

p(s +iaU)* + p'(s +iaU')* + g(p — p')k + ok’ =0,

[l

whence

: 177/ 2 _T7\2 — Nk 13 1/2
Sz_me+pU)+{amﬂU Uy glp—plk+o } ‘ (2.5)

ptp (p+p) ptp

The first, always purely imaginary term on the right-hand side of (2.5) represents
convection of any wave at velocity (pU + p'U’)/(p + p’) in the x-direction. Instability
is indicated by the second term, with alternative sign, being real. Note that, for any
unstable wave with given k, its growth rate Re(s) > 0 is greatest when f = 0 (i.e.
k = o) and the wave is directed parallel to the basic flow. As (U — U’)? is increased,
the first wave to become unstable has o> = g(p — p')/o, and correspondingly the
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condition for instability of the basic flow is that

(U-UY>2 (” :p,p ) [g(p — )], (2.6)

Further commentary on the classic formula (2.5) will be included in §5 and in Part 2.

3. Hamiltonian formulation

First, in order to define integral properties of the disturbed motion, the relevant
range of (x,y) is denoted by Q, which may have any one of the following meanings.
For the case of localized three-dimensional motions evanescent as (x> + y?)!/? — oo, it
is understood that Q = IR x IR. For the case of three-dimensional motions periodic in
x and y, it is understood that Q = (period in x) X (period in y). For two-dimensional
motions independent of y, a unit span in the y-direction is implied and then either
Q =1 or 2 = (period in Xx).

The disjoint domains in which respectively ¢ and ¢’ are harmonic functions of
(x,y,z) are

9 =Q x(—oo,n) and 2" =Q X (n,0). (3.1)
The interface z = n(x, y,t), (x,y) € Q, between these domains varies with time ¢; but
for our immediate purpose the t-dependence of n, 2 and 2’ can be left implicit.

3.1. Properties of the kinetic-energy functional

The kinetic energy of the motion is evidently unbounded unless U = U’ = 0. A scalar
quantity K can nevertheless be defined representing the kinetic-energy perturbation
that occurs when the quiescent state of the model system is disturbed. For reasons to
be explained presently, it is expressed by

K =—/(pU¢—p’U’¢’)nxdxdy+/ ;p|v¢|2dxdydz+/ 1p/IV¢'[Pdxdydz. (3.2)
Q 9 g’

The appropriateness of this definition is borne out by the analysis that follows.
Upon taking the total-energy functional as E = K + V, where V represents potential
energy, it is found that E has the role of the Hamiltonian in a canonical representation
of the governing equations (2.1) and (2.2); and accordingly E is confirmed to be an
invariant of any free motion (provided g is independent of t). In the case that ¢ and
¢’ are periodic in x and y, moreover, the identification of (3.2) with the perturbation
of kinetic energy is immediate in physical terms. Writing

K= / pLIVHP + Ugpy) dxdy dz + / PUIVEE + U9 )dxdydz,
;.CZ g/

we may note in this case that by Green’s theorem

/(f)xdxdydz:/VqS-dexdde: @a—xds
9 g S an

on

because no net contribution is made by surface integrals of ®dx/dn over the other

sections of the boundary of &. A corresponding reduction holds for the integral of

¢’ over &', whence addition of the expressions for the two parts of K gives (3.2).
The interpretation of K needs careful qualification, however, in the case of a

=/€Dadexdy=—/d>17xdxdy,
Q Q
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localized motion for which Q = R x IR. Using spherical coordinates (r,0,vy) and
referring Green’s theorem to & bounded above by S and below by a hemisphere of
radius r — oo, we get

0 n
/qﬁxdxdydz:—/@nxdxdy-i—lim/ / ¢ cos0r?sin0dody
7 Q -z Jo

=—/ cbnxdxdy-l-%nC,
Q

where C is the coefficient of the dipole far-field aligned with the x-axis (i.e. ¢ =
Cr~2cos 0 + O(r73) as r — o0). Similarly,

/qb’xdxdydz=/Q¢’nxdxdy+§7tc’.
g/

Thus the term %n(pUC + p'U’'C’) should be added on the right-hand side of (3.2)
to provide K with a literal interpretation as the kinetic-energy perturbation. (For
two-dimensional motions independent of y, the coefficient C is defined by ¢ =
Cx/r> +0(r?) as r = (x> + z%)'/?2 — o0; and C’ is defined similarly. The addition to
the respective version of (3.2) is consequently %n(pUC +0'U'C").)

The question therefore arises whether C and C’ can be non-zero in the modelling
of realistic localized motions. For the water-wave problem (i.e. the special case p’ = 0)
there is good reason to exclude the possibility of a dipole far field, because it would
imply infinite angular momentum in the half-space D; a motion with this feature
therefore cannot be created by finite forces (see Benjamin & Olver 1982, p. 175). In
the present model the total angular momentum is easily seen to be infinite unless
pC = p’C’, which condition ensures that equal and opposite angular momenta occur
in & and ' although both are infinite if C # 0 (cf. Benjamin & Olver, footnote
to p. 175). This condition is also implied by (2.2), which shows asymptotically that
pC, = p'C’; during the application of external forces over a finite part of S to initiate
a motion. The creation of dipole far fields appears to be an extraordinary possibility
for our model, however, and no significant behaviour appears to be missed by the
assumption that C = C’ = 0. Under the assumption, of course, the identification of
the expression (3.2) with the kinetic-energy perturbation is unequivocal.

Now, respective to an arbitrary fixed n = n(x,y), taken to be sufficiently smooth,
consider the class % of pairs of functions y € HY(2), y € HY(Z'), and write
X(x,y) = x(x,y,1(x,9)), X' = ¢ (x,y,n(x,y)). (Here H' = W'? is the Sobolev space of
measurable functions with square-integrable generalized derivatives in the respective
domain. The foregoing attribution implies that X, X’ € H'/?(Q) (cf. Adams 1975) and
so these functions are absolutely integrable over 2.) The following functional is well
defined in the class 4:

H(y) = —/Q(/JUX — o' U X dxdy

+/ ;pvx|2dxdydz+/ 1|V P dxdydz. (3.3)
9 9'

Accordingly, for a given function { = {(x,y) supposed sufficiently smooth (more
generally for { € H?(Q)), we may define

K() = pXmin CH (1) (3.4)

—p'X'=(
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Being convex, the functional #" has a unique minimizer (¢, ¢’) in the class ¥ under
the linear constraint pX — p’X’ = (.

The first variation " of 4" relative to the minimum is given by putting y = ¢ + %,
¥ = ¢ + 7 in (3.3) and linearizing in y and y. Using the weak (distributional) form
of Green’s theorem, we obtain

9{/:—/(pUX—p’U/X/)r]xdxdy—i—/pV¢-V;‘gdxdydz+/ p'V¢' -V dxdyd:z
Q 7

17

= / {pX(R@(n) - Urlx) - p/X/(R(D/(n) - U/”I‘c)} dx dy
Q

—/p;’(Ad)dxdydz—/ o7 Ad dxdydz, (3.5)

which must vanish for arbitrary y and y'. Thus (3.5) verifies the following properties
of the minimizer (¢, ¢’) for given { and  : (i) Ap =0 in & and A¢’ =0 in Z'; (ii)
because pX = p'X’ (owing to the linear constraint in (3.4)),

Rﬁb(n) — U11Y = R(p/(n) — U/V],c . (36)

Note that the property (3.6), as required by (2.1), is thus automatically provided
by the variational characterization (3.4) of K({). Although equivalent, it would be
comparatively awkward to define ¢ and ¢’ a priori as harmonic functions in & and
9’ satistying (3.6), p@ — p'® = { and respective asymptotic conditions for z — +oo.
Again for fixed 1, let us next express the first (infinitesimal) variation K of K
corresponding to { = p® — p'd'. By virtue of Green’s theorem, the result from (3.2) is

K = / {p@(RdS(n) —Un,) — p' &' (R ) — U’nx)} dxdy,
Q

which in view of (3.6) shows that the variational derivative of K with respect to { is
oK
Y = R‘p(n) — UV[X = R‘D,(n) — U’i’]x. (37)

It remains to examine the first variation of K including the contribution by
infinitesimal variations # of . We note that

¢ = (]S(X,y, 17) + ¢Z(X’ Y, 17);7 = (¢)S + ¢(Z)’;I 5
say, and similarly
= (¢)s + P ()i
In the evaluation of K from (3. 2) the 1ntegrals over ¥ and &’ evidently contribute a

term expressible as the integral of (2 pq> — p q'*)i over Q, together with terms arising
from the differences between @ and (¢)s, <15/ and (¢')s. It is thus found that
0K 1.2 ’ ’ ! 5/
W_p(zq — D) R, + UD,) —p'(34° — V)R () + U'P,). (3.8)

3.2. The Hamiltonian equations

Depending on n and { alone, the Hamiltonian functional is the total energy E = K4V,
where

Z/Q{;g(p_p')n%ra(R—n} dxdy (39)
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is potential energy relative to the undisturbed state of the model system. The second
component of V' is superficial energy, namely surface tension ¢ times the excess
surface area of the disturbed interface. It follows from (3.9) that

oV ,
on =g(p—p)n—20H, (3.10)

and obviously 0V /6{ = 0.
For comparison with the dynamical condition (2.2) satisfied at the interface, note
that
(pt = ¢(I) + ¢(z)’7t 5 ®x = (p(x) + ¢(z)’7x 5
and similarly for @', and &',. Hence, in view of (3.7), (3.8) and (3.10), the evolutionary
system consisting of (2.1) and (2.2) is seen to be represented by

OE oE
= == 3.11
Vll 5C s Ct 67’[ H ( )
which exemplifies canonical Hamiltonian structure (cf. Benjamin & Olver 1982, equa-
tion (2.8), to which the present system reduces in all respects when p’ = 0 and

U=0).

It deserves emphasis that the same representation (3.11) of the full dynamical
problem applies for each specification, as appropriate, of the horizontal domain Q.
This representation also applies when the liquids are given rigid boundaries at finite
distance but disjoint from the interface S. Then 2 and &’ in the expressions (3.2)
for K and (3.3) for 2 are prescribed accordingly, and the conditions d¢/dn = 0
and 0¢'/0n = 0 at the respective solid boundaries are satisfied as additional intrinsic
properties of the minimizer (¢, ¢’) for the variational principle (3.4).

3.3. Symmetries and conservation laws

In the case U = U’ = 0 the present model describes free interfacial waves; and then the
symmetry group for the three-dimensional problem (3.11) is an obvious modification of
the symmetry group for the water-wave problem (p’ = 0), which when surface tension
is operative is composed of twelve one-parameter subgroups (Benjamin & Olver,
Theorem 4.2). Eleven conservation laws can then be found corresponding to those
for the water-wave problem (Benjamin & Olver, Theorem 5.3). Various symmetries
are lost, however, when U # U’: in particular, the horizontal rotation subgroup
and the subgroup named scaled (vertical) acceleration by Benjamin & Olver (1982,
p. 151). The number of conservation laws is also reduced when U # U’, although
all the simpler, more informative ones survive. We shall not cover these aspects
comprehensively here, merely noting as follows the most conspicuous symmetries and
consequent conservative properties.

First consider translation along the t-axis, which is a symmetry if g is independent
of t so that the system (3.11) is autonomous. It then follows that E = const. along
any trajectory of the Hamiltonian system, because

dE_ [OE N\ | /O . _<5E5E _[9E SEN _
i = () (o) =(ari) () -

Here (-,-) denotes an L, inner product in respect of integration over Q. If g varies
with t, the representation (3.11) of the dynamical problem still holds; but then
dE/dt = 3(dg/dt)(p — p')(n’, 1).

For fixed g, the constant value of E may be positive, negative or zero, and this
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feature has an important bearing on the interpretation of possible motions. In com-
mon with all other Hamiltonian systems, the following property is easily confirmable
by the linearized theory summarized at the end of §2 (see §5 for details). The onset
of instability with |Im(s)] > O (i.e. the occurrence of an oscillatory wave mode with
exponentially growing amplitude) arises from the coincidence of wave modes with
E > 0 and E < 0 respectively as the limit of stability is approached. Furthermore,
any disturbance growing to finite size from an infinitesimal neighbourhood of the
undisturbed state must be characterized by E = 0. Kelvin—Helmholtz instability is
well known to develop into huge deformations of the interface, going beyond the
reach of the foregoing theory which is delimited by the assumption that # remains a
single-valued function of (x, y); but the characterization E = 0 holds throughout all
stages of such motions (see §4).

The facts that the vector-valued function —[n,,(,]T represents the infinitesimal
generator of the time-translation subgroup and that the invariance of E follows from
(3.11) exemplify a general rule for identifying the invariants of a Hamiltonian system
(cf. Benjamin & Olver 1982, §5). For the same reason, because horizontal translations
are represented by —[n,,{,]7 and —[r]y,Cy]T, the invariance of functionals I; and I,
is ensured by their satisfying

_ <'g> = Jgradl;, — <’g’) =Jgrady, (312)
,

X

where J is the skew-symmetric matrix implicit in (3.11), namely

_ (0 1 _ (oL;/on P
J—( 1 0>’ and grade—<5Ij/5C> (j=12).

From (3.12) it can be seen at once that

11=—/znxdxdy, Iz=—/C'1ydxdy, (3.13)
Q Q

and these invariant functionals are describable as the components of horizontal
impulse in the x-direction and y-direction respectively.

An interesting variational principle hence follows for the case of two-dimensional
motions independent of y. A steady wave motion in this class is a non-trivial solution
of (3.11) in the form #n(x — ct), {(x — ct), where the phase velocity c is a real constant.
Because 0, = —c 0, as an operation on such a solution, comparison between (3.11)
and the first of (3.12) shows that

grad E = cgradl,. (3.14)

Thus any such solution is a conditional extremal of E subject to I; being prescribed,
and c is the Lagrange multiplier. The variational principle serves particularly to
characterize steady periodic waves, competitors for a conditional extremum of E
being pairs of periodic functions with a given period; and plainly, since both E and I
are invariants of any free motion, a conditional minimum implies that the steady wave
motion is orbitally stable to disturbances of the same period (i.e. Lyapunov stable in
respect of a translation-invariant metric). A corresponding variational principle has
long been known to apply to steady water waves (Benjamin 1972, Appendix; 1974,
§5; 1984, §6.3); and the extension to unforced interfacial waves (U = U’ = 0) is
hardly surprising, although it has not been noticed previously as far as we know. On
the other hand, the extension of the variational principle to the Kelvin—-Helmholtz
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problem is somewhat surprising at first, and we shall need to examine its implications
carefully in §5.
A few other symmetries and conservative properties will be noted in §4.3.

3.4. Alternative Hamiltonian formulation

For two-dimensional wave motions there is marginal advantage in the following
alternative representation, which adapts the approach to the water-wave problem
proposed by Benjamin (1984, Ch. 5). Introduce the stream functions yp and ', which
are the harmonic conjugates of ¢ and ¢’ in & and &' respectively, satisfying ¢, = .,
¢, =—y, and ¢', =y, ¢', = —y’,. The kinematic conditions (2.1) at the interface
become

n+Un+¥),=0, n+Un+%¥)=0, (3.15)

where ¥ = y(x,n,t) and ¥’ = y'(x,n,t). Expressing K in terms of y and vy’ rather
than as in (3.2), defining a respective convex functional over H'(2) x H'(Z') akin to
A" defined by (3.3), and recognizing K to be the unique minimizer of this functional
subject to the linear constraint

P¥w— P V') R=0(=W,
say, one finds that
Un+¥Y=Un+% (3.16)

is automatically a property of the minimizer (y,’). Furthermore, the equal expres-
sions on each side of (3.16) are found to be the same as 0K /dW. Hence (3.15) and
the dynamical equation (2.2) are seen to be recovered by

W+ ©OE/W),=0, W,+(©E/dn),=0 (3.17)

(cf. Benjamin 1984, equation (6.5)).
Like (3.11), being indeed equivalent to it, the system (3.17) is Hamiltonian: the
cosymplectic skew-symmetric operator in the condensed representation

I, W' =JdgradE is J = < Oa _Oax) .

A comparative merit of (3.17) is that both equations have the form of conservation
laws. This feature may be helpful in the case that the fluids have at least one
horizontal rigid boundary and long-wave approximations need to be developed (cf.
Benjamin 1984, §6.5). Another merit is that, according to the rule exemplified by
the first of (3.12), the impulse invariant is even more evidently than before given by
I = <7/Is W>

In this comparatively simple case of two-dimensional motions, it is of interest to
find explicitly the local conservation law that is implied by the invariance of the
impulse functional I;. Because I; is the integral of the density nW over 2, we can
presume the existence of a flux density S (called flow force in Benjamin 1984, where
the general role of such fluxes in impulse-conservation laws for Hamiltonian systems
was discussed at length) that satisfies

(W), + S, =0 (3.18)

everywhere in Q. The corresponding flux for the two-dimensional water-wave problem
is already on record, having a surprising form (Benjamin 1984, §6.4). By substitution
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from (3.17) for the time derivatives of # and W, we obtain from (3.18)

Se=—nWi—nW
=n(SE/on)x + W(OE/OW),
= (noE/on)x — (BE/on)n + W(Un + ¥)..
Here the alternative U'n + ¥’ for 6 E /0 W according to (3.16) can be used in the last
term.
To evaluate dE/dén in this expression for S, the results (3.8) and (3.10) are

available, (3.8) needing to be reformulated in terms of the derivatives of y and v’ at
the interface: for example, @) = —¥(,) and

Rgb(n) = ¢(2) - WXCD(,\») = _T(x) — Nx 'P(z) =-Y,,
because R = (1 +n2)"/2. It is thus found that

Se = (MOE/dn)x + W(Un + ¥), — niiglp — p')n — o R}
—n{p(3¢° — Yy ¥x + UR¥ () — P’(%q/2 — ¥V y?'c+URY )},

whence (3.16) and the definition of W above (3.16) show that various terms cancel
and there follows

Sx = mOE/on)+ p¥ )W — PV ) ¥
+Hx {%P(lp(zz) - lIU(%V)) - %Pl(lpl(zz) - qﬂ(zx)) —glp—pn+ UﬂxxR_3} . (3.19)
Hence we conclude that
S =ndE/on—ig(p—p > —oR™

n ’e]
[ et —vdiaz+ [ Ll -, (3.20)
—0 n
Partial differentiation of this expression with respect to x is readily seen to recover
(3.19). The terms proportional to 5, follow immediately. Differentiation of the two
integrals also gives integrals, the first two terms of which can be integrated by parts,
recovering the second and third terms on the right-hand side of (3.19), and the
remainder is zero because Ay =0 in 2 and Ay’ =0 in &'

For a steady wave motion described by a solution of (3.17) in the form 5(x — ct),

W (x — ct), where the phase velocity ¢ is a real constant, (3.18) implies that
S=8—cuWw) (3.21)

is independent of x. (Steady-wave solutions of the nonlinear Kelvin—Helmholtz
problem will be investigated in Part 2.) Such a solution satisfies the variational
principle (3.14), which implies in particular that 0E/én = cdl;/on = ¢W. Thus the
first term on the right-hand side of (3.20) is cancelled in S given by (3.21), and we
have

§=—3glp—p M —oR"
n 0
[ pwiovda [ o 62
% p
(cf. Benjamin 1984, equation (6.9), the corresponding result for the water-wave

problem in the absence of surface tension).
The result (3.22) is doubly remarkable, first because it has no explicit dependence
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on ¢ and secondly because, in common with (3.20), it has no explicit dependence on
U and U’. One may readily confirm directly, however, that S is constant for any
steady-wave solution of the system (3.17), which for steady waves reduces to

(c—=Um=Y¥, cW=0E/dy.

Note that S and S are fully determined by the dependent variables n and W,
but not by the local values of them and their derivatives qua functions of x. This
limitation is inherent because the system of evolutionary equations (3.17) entails non-
local operators (e.g. ¥ in 0E/0W = Uy + ¥ is evidently a non-local transformation
of W and p).

The generalization of (3.17) to three-dimensional motions requires the threefold set
of dependent variables 1, 1, and #n,. The method has been explained by Benjamin
(1984, §6.6), but it offers little advantage over the simpler, two-component formulation
(3.11).

4. Hamiltonian formulation when the interface is folded

Later stages in the evolution from Kelvin—-Helmholtz instability have been investi-
gated mainly by numerical solution of the hydrodynamic problem — or its approximate
simulation by a line of discrete vortices (e.g. see Peltier, Hallé & Clark 1978; Aref
& Siggia 1980; Higdon & Pozrikidis 1985; Klaassen & Peltier 1985). The usual
model is two-dimensional and periodic in x. The interface constituting a vortex
sheet has been found to become folded, eventually rolling up into a spiralling billow.
Another example where a parametric representation is necessary is the overhanging
interfacial waves found by Meiron & Saffman (1983). Our aim now is to demonstrate
the Hamiltonian structure that holds throughout all such developments. The needed
parametric representation of the interface is closely related to that for water waves,
as explained by Benjamin & Olver (1982, Appendix 1), and to that for bubbles as
explained by Benjamin (1987).

4.1. Parametric representation of S

The axes used in §2 and §3 are now relabelled (x1, x,, X3) & (x,y,z), and the interface
S is taken to be described parametrically by

X = Xi(,ua V,t), = 1;25 3 (41)

where (u,v) ranges over a two-dimensional domain Q. We write

¢=¢sd=ef¢(X1,X2’X3,f), P =g =Xy, X2, X3,1)

and, further compressing the notation for spatial derivatives of ¢ and ¢’ evaluated at

S,
Qp(i) = <2;ﬁ> and (D/(i) = (gf ) .
i/s i/s

_ (X5, X3) _ 0(X5,Xy) by = (X1, X2) J=@)"2,

) T T o) )

the components of the unit normal to S directed into the less-dense liquid are y;/J,

In terms of

71
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and the element of surface area on S is J dudv. (Note that, in the above definition of
J and henceforth, repeated subscripts imply summation over 1,2,3.)

The kinematic conditions (2.1), relating the normal velocity of S to that in the
contiguous liquids, must now be replaced by their generalizations

i0: X — U/Vl = J‘D/(n) =i ‘Dii)» } 4.2)
Yi0Xi = Uy =@ =7 P.
Correspondingly, because
0P = Q)+ P;0X;/0t
and similarly for 09'/0t, the dynamical condition (2.2) is generalized by
{4 p(UDy + 347 — D30, X))
—p'(U'P' ) + %qu —9'10:X;) = —g(p — p") X3 + 20H, (4.3)

in which { = p® — p'® as before and ¢*> = &7, g’ = cl')’(zi). The mean curvature H
of the surface S can be expressed in the standard way as a nonlinear function of the
six derivatives 0.X;/0u and 0X;/0v, but there is no need to spell out this detail here.
(It will suffice for present purposes merely to recognize another well-known result
from differential geometry, that —2Hy; is the variational derivative of the surface-area
integral with respect to X;; see (4.4) and (4.5) below.)

4.2. The Hamiltonian equations

Turning to the generalization of the total-energy functional, let us consider potential
energy as originally expressed by (3.9). It is now given by

V= /Q {Lg(p— p)Xiys +0(J —p3)} dudv, (4.4)

which of course reduces to (3.9) in the restricted case X; = u = x1, Xo = v = Xx;,
X3 = n(xy,xy,t). Variational derivatives are now defined by the L, inner product
corresponding to integration with respect to (u,v) over a fixed domain, denoted as
before by Q. It is accordingly found from (4.4) that

oV ,
5X = {g(p— p) X3 —20H}y;. (4.5)

Generalizing (3.2), an expression for the kinetic-energy perturbation is
K = /(pU(IJ—p’U/@’)yI dudy
Q

+ [ bplvoPdndvdx+ [ VP dndnda,  @6)

which entails no restriction on the curved boundary S of & and &'. Proceeding as in
§3 to identify K, for given S, as the unique minimum of this functional defined over
HY(2) x H(Z'), we deduce in the same way as before that

oK

Uyt +9:®5 = Uy + 995 = e (4.7)

Recognizing that
(=p{(®)s+DuX;}—p {(?)s + P Xi},
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we find further that

2
oxX. p(34%7i — Py @) — p' (34" — Py ® ()
i
+(pU‘D(1) — p,U/@,(l))Vi — (pU(D(,‘) — p,U,‘p,(,'))'yl , (48)

where the terms in the second line, deriving from the first integral in (4.6), make a
contribution only for i = 2,3.
Now, the solution of the evolutionary problem may be considered as the vector-
valued function
Z=[X1,X,X5,(]" = Z(uv,1), (4.9)

and our aim is to establish a Hamiltonian formulation of the problem in terms of Z.
Writing
Loy =pPo—p' P, i=123,
we define
aij = yily — 7o = —aji
and the skew-symmetric matrix
0 6162 aiz —)N1
_ | 9 . —N2
M(z) = asi an 0 —ps
o2 oy3 0

The system (4.2) and (4.3) is hence seen, in view of (4.5), (4.7) and (4.8), to be
equivalent to
M(Z)(0,Z) = grad E(Z), (4.10)

where E = K 4+ V and grad E is the column vector composed of the variational
derivatives of E with respect to X, X;, X3 and { (cf. Benjamin & Olver 1982,
equation (A6); Benjamin 1987, equation (2.7)).

The equivalence between (4.10) and the nonlinear conditions (4.2) and (4.3) is
readily confirmable. First, by virtue of (4.7), the fourth row of (4.10) recovers (4.2).
The first three rows are (with i = 1,2, 3)

aijasz —7i0:{ =0E/6X;,

that is,
7i({(50: X — 0:8) — {70 X; = 0E/X;. (4.11)

Substituting (4.8) for the right-hand side and using (4.2), as already established, to
express 7;0,X; in the third term on the left-hand side, we find that (4.11) reduces to
y; times equation (4.3). Hence multiplication by y; and summation proves that (4.3)
as well as (4.2) is implied by (4.10) provided J > 0, which condition can be assumed
generally to hold everywhere on S.

The generalized Hamiltonian formulation (4.10) is plainly non-canonical. The
matrix M(Z) is not invertible in any elementary sense, as must be expected because
(4.10) covers the whole gauge group of parametric representations of the interface
S (a Lie group; cf. footnote to p. 354 in Benjamin 1987). A proof of completeness
(closure) for the Hamiltonian structure is given in §4.4.

4.3. Invariants

The following rule relating certain symmetry groups to invariant functionals has been
discussed in a related context by Benjamin (1987, p. 354). Let the four-component
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vector V represent the infinitesimal generator of a one-parameter symmetry group
for (4.10), in the sense that if Z is any solution Z + ¢V is also a solution to O(e);
and let E be unaffected to O(¢) by the transformation represented. Then a functional
f satisfying M(Z)V = grad f(Z) is invariant with ¢ when evaluated on any solution
of (4.10).

Because V = Z, represents translation in t, which is a symmetry leaving E
unaffected if g = const., this rule then shows that E(Z) = const. But total-energy
conservation is otherwise an immediate consequence of (4.10) if g = const., because
we then have

dE
— = dE(Z)) - Z,dudv = Z)Z,) Z,dudv =0
= /Q{gra (2)) - Z,dudy /Quw() ) Z,dpdy

by the skew-symmetry of M(Z).
Generalizing (3.13), expressions for the horizontal impulse invariants are

1= / Ondpdy (1= 1,2), (4.12)
o
from which there follows
gradI; = [0, ax, a3, 71]" = M(Z)[1,0,0,0]", (4.13)
grad I, = [ap, 0, as, Vz]T =M(Z) |0, 1,030]T' (4.14)

The vector ¥V = [1,0,0,0]7 appearing in (4.13) represents the (whole) group of
translations in the x;-direction, for the addition of any real number ¢ to X; shifts
the interface by this distance in the xj-direction without changing the dynamical
equations (4.10). Thus the rule shows that I;(Z) = const., as is easily confirmable
otherwise. Similarly, ¥ = [0,1,0,0]” appearing in (4.14) represents translations in the
x,-direction.

Consider next the volume 7~ displaced upwards by the interface S from the
horizontal plane z = 0, thus

Q

Either of the kinematical conditions (4.2) imply that d¥"/dt = 0, and plainly the case
¥ =0 is the most typical for the Kelvin—Helmholtz model. The system of equations
(4.10) also applies, however, to the case where Q2 = IR x R and the model is released
from an initial state with non-zero ¥". It follows from (4.15) that

grad 7" = [y1, 72, 73, 01" = M(Z)[0,0,0,—1]". (4.16)

Thus, according to our rule, the invariance of ¥ is linked with the obvious symmetry
{ — &, which is equivalent to adding —¢/(p — p’) to each of ¢ and ¢'. (Note that
the terms with factors U and U’ on the right-hand side of the expression (4.6) for
K are unaffected thereby, because the integral of y; over Q is zero according to the
definition of Q.)

Further, note that ¥ = [0,0,1,—g(p — p')t]T represents a symmetry group, for it is
evident from (4.2) and (4.3) that, if [X|, X5, X3,{]T(u, v, 1) is any solution, so also is

(X1, X5, X546 (—glp—ped”, (4.17)
corresponding to which the transformations of ¢ and ¢’ are

¢(x1,x2,X3 _Sat)_gSta ¢/(X1,x2,X3 — & t)_gflt (418)



316 T. B. Benjamin and T. J. Bridges

This symmetry refers to vertical displacements of the whole interface; and in the
case 2 = R x R, to keep the Hamiltonian representation meaningful under the
transformation (4.17), it is necessary to replace X35 by (X; + ¢)> — &* in the definition
(4.4) of potential energy V. Thus E is affected to O(¢) in this case, and so a condition
of our rule about symmetries and invariants is unsatisfied. Note, however, that the
vertical component of impulse may be defined as

I = / Lys dudv, (4.19)
Q

which gives
grad I3 = [ap, ax, 0, y3]7 = M(Z)[0,0,1,0]" ; (4.20)

and hence the present symmetry ¥~ appears in
grad (I + gt(p — p')7") = M(Z) [0,0,1,—g(p — p)]" .

This result suggests that I3+ gt(p—p’) may be invariant, and the suggested property
may be confirmed as follows. Using (4.20), the skew-symmetry of M(Z) and then
(4.10), we deduce that

L _

—/(gradh)'zld,udv:— Mdud\;:_[aE] )
dt o »

0 5X3 68

Here E is considered to depend on ¢ according to the transformations (4.17) and
(4.18). Because plainly dK /de = 0 (when both liquids are infinitely deep), we are left
with

dt de
which is seen upon comparison with (4.5) and (4.15). (Note that whereas dK /de =0
is obvious by construction, it may also be confirmed from (4.8) that, equivalently,
the integral of 0K /6X5 over Q is zero. In this integral the coefficients of p and p’
are separately found to vanish by virtue of ¢ and ¢’ being harmonic in 2 and &’
respectively.)

The result (4.21) is special to the case Q = IR x R with infinitely deep liquids (cf.
discussion of I; on p- 171 of Benjamin & Olver 1982). In this case, if ¥~ > 0, the
upward vertical impulse I5 changes at a steady rate equal to minus the relative weight
of the liquid in the volume 7. In the case of rigid boundaries at finite distances,
however, the symmetry now in question is broken, and the extra weight is borne by
changes in pressure from its hydrostatic value at the boundaries (cf. Benjamin &
Olver 1982, §6.4).

Finally, let us consider the more complicated symmetry group constituting hor-
izontal Galilean invariance of the hydrodynamic model. The complete group is
represented by the statement that if [ X, X», X3,{]7(u, v,t) is any solution and & is any
real number, then a new solution is composed by

d d
Ii [ E} — g(p— )7, (4.21)
e=0

X](,U,V,t)-l-gt, XZ(#}‘)’t)a X3(M,V,t) (422)
and

(v, t) —e(p — p)X1(pv, 1) — (pU — p'Uet + 3(p — p')e’t (4.23)
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corresponding to which the transformed velocity potentials are
P(x1 — &t, X2, x3,1) + &(x; — Ut) + 1e%t,

@' (x1 — &t,x2,x3,1) + &(x; — U't) + 1%t }

This statement is easily verified by substitution of (4.22)—(4.24) into (4.2) and (4.3).
The infinitesimal generator of the symmetry group is accordingly represented by

V=1[00 (p—p)Xi—(pU—p'U)]". (4.25)

(4.24)

In relation to Hamiltonian structure and a conservation law, however, this symmetry
requires more careful appraisal than the previous ones because K defined by (4.6)
does not remain finite under the transformations (4.24). Note first that, in place of
(4.22)—(4.24), a transformation composing a new solution is just X; + et, with X,, X3
and { unchanged, while U and U’ become U + ¢ and U’ + ¢&. We then have merely
V =[t,0,0,0]7, which appears in grad(I;t) = M(Z)[t,0,0,0]”, but E depends on .
The symmetry is hence seen to imply the trivial identity d(I,¢)/dt = I; = (0E/d¢).—o
(cf. Benjamin 1987, equation (2.10)).
A more interesting result is found by considering

F=/X1X3y3dudv, (426)
Q

which in the case ¥~ > 0 is equivalent to #" X, where X is the horizontal coordinate
of the centroid of the displaced volume. It follows from (4.26) that
grad F = [Xiy1, X172, X173, 01" = M(Z)[0,0,0,—X,]".
Hence, also in view of (4.13) and (4.16), we have
grad {I1t — (p — p")F + (pU — p'U")V't} = M(Z)V (4.27)

with V given by (4.25).
The functional on the left-hand side of (4.27) is thus indicated as a possible
invariant. Because I, and ¥~ are already known to be invariant, the indication is that

/ dF /! !/
(p=p) gy =l (U —p U5 (4.28)
and this property can be checked directly. Using the first of (4.2), we obtain

dF

~ [(erad Py Zududv = [ Xip(Xodu

dt 0 0

= / Xl(UVI + ¢(;1)J) d,udV +U7?v + / X1¢(n)J d,udv ;
Q Q

and the second of (4.2) leads to a similar result with U’ replacing U and &', replacing
®(,). Hence (4.28) is confirmed if

[ Xip0uy — 9@ dudy = 1. (4.29)
Q

This identity is an immediate consequence of Green’s theorem in the case of
motions such that ¢ and ¢’ are periodic in x; and x;. In the case of localized three-
dimensional motions, Green’s theorem may be referred to the harmonic functions ¢
and x; = rcos 0 in the space & bounded by the interface S and, below it, a hemisphere
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of radius r — oo, on which spherical polar coordinates 6 and y range over [—m, 0]
and [0, n] respectively. Thus, because (0x;/0n)J = y; on S, the theorem shows that

/(X1<D(,1)J — ®y)dudv = lim/ {r?f — q,')} cos 0 r?sin0do dy
Io) r—o0 r
= —-2nC, (4.30)

where C is the coefficient of the dipole far field aligned with the x;-axis, as was defined
in the discussion of (3.2). A corresponding conclusion holds for the space above S,
in which the dipole coefficient of the far field is C'. Hence a generalized version of
(4.29) is inferred, wherein a term —2n(pC +p'C’') = —4npC is added to the right-hand
side. In general the same term appears on the right-hand side of (4.28); and so the
unmodified conservation law (4.28) depends on the assumption C = C’ = 0 that was
introduced with explanation in the discussion of (3.2).

This conservation law is comparable with a result demonstrated for water waves by
Benjamin & Olver (1982, equation (6.24)). Its version with the extra term due to the
dipole far fields is comparable with a result demonstrated for bubbles by Benjamin
(1987, equation (2.18); note that for bubbles the definition of impulse I; has a sign
opposite to the present definition (4.12) of Iy).

4.4, Action and the symplectic operator

A technical requirement for completeness of the specification of the Hamiltonian
structure in §4.2 is that the skew-symmetric operator M(Z) be closed. The skew-
symmetric bilinear form associated with M(Z) is

(&, &) = /Q (& M(Z)E) dudy

where (-,-) is a standard inner product for vector-valued functions of the form (4.9)
and &, and &, are arbitrary vectors of the form (4.9).
The differential two-form associated with w is

w = /{aldel /\dX2 + a3 dX1 /\dX3 | dX1 /\dC
Q

+ay; dX2 AN dX3 — Y2 dX2 N dC — 73 dX3 N dC}d,u dv

where A is the wedge product. We say that the skew-symmetric operator M(Z) satisfies
the closure condition if dw = 0 where d is the exterior derivative (cf. Benjamin 1987,
Appendix B; Bowman 1987 and references therein). The direct analysis of dw to
verify closure is lengthy and not very illuminating. Here we will circumvent this
difficulty by showing that w is an exact two-form; that is there exists a one-form
0 with @ = df. It then follows immediately that dw = d?0 = 0. An interesting
consequence of this geometric proof of closure is that the one-form 6 corresponds to
wave action (cf. Hayes 1970). Indeed the result gives a generalization of wave action
to overhanging and parametrically defined interfacial waves.

The wave-action functional, for the case when the surface is defined parametrically,
is found to correspond to the integral over the fluid interface of the product of the
weighted potential { and the normal component of the time-derivative of the interface
position, X, - n,

0X 0X 0X
&{(Z):/CX[‘ndSI/CXr‘nJd,udV:/C y1—1+V272+y3 s dudv.
S 0 o ot ot ot
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The one-form corresponding to action is then
0= / {(y1dXy + y2dX; + y3dX5) dudy.
Q

It is now verified that d6 = w.
By direct calculation, using the properties of exterior differentiation,

do = /{VldC ANdX| 4+ y,dl AdX, + y3d AdX;
Q

+{dy; AdX; + (dy, AdX, + (dys AdX; dudy.
But, using the definition of y; (j = 1,2,3) in §4.1,
dVl = X3vdX2y + XZ;AdX3v - X3;th2v - X2vdX3;z >
dVZ = ledX3u + XSdeIV - ledX3v - X3vdX1/¢ >
dV3 = Xl,udXZV + XZvXm,u — ledXZu - X2,udX1v >

from which it follows, after a short calculation, that

3
0
E d”/j /\de = 87 (—X3,dX; AdX, + X, dX AdX; — X, dX, AdXG)
: u
Jj=1

+ g— (X3, dXy AdX, — X5, dX ) AdX; + X, dX5 AdXG)
v

To simplify df further note that

0X, 0X 0X, 0X
Cu C(1 +loy—=— o +C(3)TM3, (= ((1 +C(2 +C(3)Tv3a

and therefore the coefﬁments in M(Z) can be written in the form

0X,
&:“ 6v =y ov

Combining the above results in the expression for df gives

0X 0X
lzzcltTj—C‘,T;, _Cl C‘

d9=/{V1dC/\dX1+ydeAdX2+y3chdX3
Q

+¢ g— (—X3,dX; AdXs + XodX, AdXs — X1,dXs A dX5)
u

+C% (X3HdX1 A dX2 _XzﬂXm AN dX3 +X1“dX2 /\dX3) }d'udv

:/{_YldX1/\dC—Vdez/\dC—"/sd)Q/\dC
Q

—{ (—X5,dX; A dX, 4 X5,dX; A dX; — X,dX, A dXG)
_Cv (X3udX1 AN dX2 — XQHXm AN dX3 + X]HdXQ AN dX3) }d/,th

= /{—’)}1 dX] /\d( —'))dez/\dC —})3dX3/\d€
Q
FapdXi AdX, + a3 dX; AdXs + a3 dX, AdX; }d,udv

=w.

In the above argument we have used the anti-symmetry of the wedge, integration by
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parts (assuming suitable conditions on variations at the boundary of the region ),
the expressions for g;; and finally the definition of w.

The action may be used to construct a variational principle for (4.10). Taking
suitable variations with fixed endpoint conditions at t1,t, it follows that

grad o/ (Z) =M(Z)Z,

where the gradient is defined with respect to an inner product that includes integration
over u, v and t. Therefore, for all intervals [t;,t;] < IR and admissable variations
with fixed endpoint conditions at (¢,t,), the Hamiltonian evolution equation (4.10) is
given by the vanishing of the first variation of the functional,

L(Z,Z,) = / ; [/(Z)— E(Z)] dt.

In the special case where the interface can be represented as a single-valued function
of position, say X3 = n(xy,x,) and so X, = (0,0, #,), the action reduces to

,Q/=/C11tdx1dxz.
Q

When p = 1 and p’ = 0 the expression for action reduces to .« = [, @i, dx;dx, which
recovers the classical result for water waves (cf. Benjamin & Olver 1982, p. 168).

4.5. Two-dimensional motions

Problems in this class are covered by letting v = x, = X, and taking as three
dependent variables

X](,Ll, t)a X3(:u’ t)a C(:ua t)
(so that y, = 0). Again using Z to denote them collectively as a column vector, and
writing grad E for the column vector composed of the three variational derivatives,
we have the same Hamiltonian representation (4.10) but with

0 a3 —n
M(Z)= a1 0 —p], (4.31)
nors 0
in which y; = —0X3/0u, y3 = 0X;/0u and
0X, 0X3
an =l Tt =ty =~
13 1) a# (3) alu Iz
Horizontal impulse is expressed by
oX
I, = —/ (=2 du. (4.32)
o Ou

Here, as in the integrals expressing E, the range Q of integration is either IR, in the
case of localized motions, or one period in the case of spatially periodic motions.
From (4.32) and (4.31), the property (4.13) is seen to be recovered in the form

grad I, = [0, 0(/ou, —0X5/0u]T =M(Z)[1,0,0]7, (4.33)

which reconfirms that I; = const. along any orbit of the Hamiltonian system. For a
steady wave motion, we have

Xi=X(pw+ct, X3=X3n), (=Lnw;
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and thus (4.32) obviously bears out the variational characterization (3.14); that is,
M(Z)(0.Z) = cgradl;.

Note that, in the case of periodic motions, the period in u can generally be chosen
to be the same as the period in x1, say 4. Then

Xi(p+nit) = Xo(pt) +nk, Xs(p+nit)=Xs(pt), (u+nit)={w1),

where n is any integer.
The action functional for two-dimensional motions restricts to

0X 0X 0X;0X 0X;0X
)= [ o (n5ten ) an= (G20 G0 )
Q Q

ot ot ou ot op ot
and, as in the three-dimensional case, grad .«/(Z) = M(Z)Z,. But

CIX3,u - C;¢X3t
M(Z)Z, = _étX1u+éuX1t =Z,u><Z[
— X1 X3, + X1, X3

where x is the usual vector cross-product in IR® (noting that Z has only three
components in the two-dimensional case). Therefore the Hamiltonian equations
(4.10) reduce to the elegant form

Z,xZ,=gradE(Z).

5. Comments on the linearized approximation

Returning to the linearized theory summarized in §2.1, we now note its Hamilto-
nian formulation which provides an informative interpretation of Kelvin—-Helmholtz
instability. In this approximation, the Hamiltonian representation (3.11) of the evo-
lutionary problem remains valid, of course, but E reduces to a quadratic functional
of the dependent variables # and {. An explicit expression for E can be deduced as
follows.

First note the admissible simplification of the functional #" given by (3.3), the
minimum of which according to (3.4) defines the kinetic-energy perturbation K as a
functional of 5 and { alone. The domains of integration & and 2’ in (3.3), which
are defined exactly by (3.1), can be approximated by € x (—o0,0) and Q x (0,00)
without affecting K to second order. Hence the minimizer (¢, ¢') of 4 subject to the
constraint specified in (3.4) which makes p® — p'® = {, where now & = ¢(x,y,0,t)
and @' = ¢'(x,y,0,t), is easily confirmed to have the property

QS(Z) - U’7x = dy(z) - U/’7x (51)

with @) = ¢.(x,,0,t) and &'(;) = ¢'.(x,,0,t). This property is just the linearized
version of (3.6). Moreover, we can write @, = L@, &) = —L&’, where L is
the linear operator whose symbol is k or more generally |k|. (The symbol L of
a linear operator on functions of (x,y) is defined as the multiplier in the relation
L eix8) = L(o, B)el®+6Y). The present identification L = k = (o + $2)V/2, with k > 0
understood, is evident from the periodic harmonic functions ¢ and ¢’ exhibited in
§2.1. Note that Green’s theorem for harmonic functions shows the present L to be
a symmetric operator, which fact also appears from Parseval’s theorem referred to a
Fourier-integral representation of L f(x,y) € L,(R x R).)
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Solving (5.1) and the definition p® — p’® = { as simultaneous equations for ¢ and
@', we find that

[{+p'(U~U)L"nd,

e
1
P = [~ +p(U—U)L "]
p+p
Hence the second-order approximation to E = K + V is found to have the form
E= [ AL~ By + bncrldxdy. (52)
Q
in which
Ar=—o1g, oy =tUERU,
p+p p+p
pp'(U—-U") ,
Cn="————""L " +glp—pM—0(na+mn,).

p+yp

Here the second-order approximation R — 1 = %(”Ii + r[ﬁ) has been used for part of
V given by (3.9). The linear operators A and C thus defined are evidently symmetric,
and B is anti-symmetric. The symbols of these operators are

Aot g tUErl,
p+p’ p+p
5.3)
. pp(U—UY [ & , (

In view of the Hamiltonian representation (3.11), the linearized equations of motion
are seen at once from (5.2) to be

n=A{—Bn, {—B{—-Cn, (5.4)

which may be confirmed to correspond to (2.3) and (2.4). Focusing attention again
on solutions that are simple-harmonic in x and y, so writing

n =Re (ﬁe“exp{i(cxx + By)} ) and (=Re (Ze“exp{i(ocx + 5)’)})

we obtain from (5.4)

B+s)ii—AL =0, Ci+(B+s)C=0, (5.5)

which shows that
s=—B+ (—AC)"2. (5.6)
Substitution of the expressions (5.3) into this result recovers the classic formula (2.6)

exactly.

Let us now evaluate E for such solutions of (5.4). Assuming  # 0, and taking Q

to be composed of one period 27 /|«| in x and one period 27 /|f] in y, we see that the
sum of the first and third terms on the right-hand side of (5.2) is

sy A A A

— (A[L]? + C?)e*™e = —(IC| + C)[f e, (5.7)

|| |of|

because A > 0 while (5.5) and (5.6) imply that { = +(—C/A)"%;. If f = 0 and Q is
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just one period 27/|«| in x, the factor n%/|afB| in (5.7) is replaced by n/2|«|. In the
case C > 0, { is in phase with By or —By#, and then the second term on the right-hand
side of (5.2) is

2
+<fﬂ0|m«wAV”mF

or the same with factor n/|x| if f = 0. (Note that Re(s) = 0 in this case.) But, in
the case C < 0, { is in phase with # or —y, hence in quadrature with By, and so the
second term on the right-hand side of (5.2) is zero.

In view also of (5.7), we conclude that E = 0 for the non-trivial solutions of
(5. 4) when C < 0, one of which solutions has the exponential growth rate Res =
(—AC)!”2 > 0 constituting Kelvin—Helmholtz instability. When C > 0, on the other
hand, we have Res = 0 and E has the constant values

2n?
ol

one of which is positive for all C > 0 but the other is negative for sufficiently small
C>0.

Thus a property common to all Hamiltonian systems is explicitly demonstrated.
Namely, when a parameter characterizing a steady state of the system is varied
continuously through a critical value, on one side of which infinitesimal perturbed
motions are time-periodic and on the other side of which the steady state becomes
unstable, then the limit of stability corresponds to the coincidence of time-periodic
modes for which respectively E > 0 and E < 0 in a neighbourhood of the critical
value on the stable side. In the modern literature the term ‘different Krein signatures’
is often used to describe E > 0 and E < 0; but the general property in question was
recognized long ago by Weierstrass and Kelvin.

The critical case C = 0 also provides instability, albeiAt in weaker form than the
exponentially growing solutions of (5.4) provided when C < 0. In this case (5.4) is
satisfied by

{CEBIC/A 2} i,

n,0) = %(tgz, Z)exp{—ﬁt +i(ox + By)} +cc.

for any complex constant C; and this solution will negate Liapunov stability in any
appropriate metric.

It has been recognized in §2.1 that, when (U — U’)? is large enough to satisfy the
inequality (2.6), Kelvin—-Helmholtz instability arises over a range of « > 0 and f > 0.
Values of (U — U’)? are suitably represented in the dimensionless form

_ pfw-vuy
(p+p")glp — p)ol'2”

and the critical values of F making C =0 are given by
@+F) 1 +7+F)

&2

F. =

with @ = a[c/g(p — p')]"/? and B = B[a/g(p — p')]"/>. The possibilities are illustrated
in figure 2, which shows graphs of F, against & for several values of f. At points
(F,%) lying above the curve for a particular f > 0, the system (5.4) has a solution
growing exponentially in time with the respective wavenumbers & and f. As already
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FIGURE 2. Schematic diagram showing the dimensionless neutral curve F, plotted against
non-dimensional wavenumber o for several values of f. Kelvin-Helmholtz instability arises for
F > F.(a,f).

pointed out in §2.1, the unstable range of & when F > 2 is widest for f = 0; and the

minimum value of F for instability is F, = 2 which is achieved at @ = 1, § = 0, which
suggests that a form of Squire’s Theorem may be operational.

6. Conclusions

The main contribution of this paper has been to identify the Hamiltonian structure
of the Kelvin—-Helmholtz problem. This structure is far from obvious; it depends cru-
cially on the variational characterization of the kinetic-energy perturbation introduced
in §3.1; and it has not been noticed before. Its advantages include the systematic
relation of symmetries to conservation laws, several of which demonstrated in §3.3
and §4.3 are also far from obvious, and the provision of a variational principle (3.14)
for the steady wave motions that the full Kelvin—-Helmholtz model in fact incorpo-
rates, even under conditions where the basic state of the model is unstable. This and
other aspects of the nonlinear problem in a parametric neighbourhood of C = 0,
particularly bifurcations of steady waves and their stability, will be treated in Part 2
(Benjamin & Bridges 1997).
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